TECHNISCHES MERKBLATT

Grivory GVL-6H natur

Produktbeschreibung

Grivory GVL-6H natur basiert auf einem wärmestabilisierten, teilkristallinen Polyamid mit partiell aromatischen Anteilen und ist mit 60% Langglasfasern verstärkt.

Grivory GVL-6H natur zeichnet sich durch folgende Schlüsseleigenschaften aus:

- Hohe Steifigkeit und Festigkeit, auch im konditionierten Zustand und über einen weiten Temperaturbereich
- Exzellente Kerbschlagzähigkeit auch bei niedrigen Temperaturen
- · Geringe Kriechneigung
- Hohe Wärmeformbeständigkeit
- · Geringe Feuchtigkeitsaufnahme
- Sehr gute Dimensionsstabilität und geringer Verzug

Grivory GVL-6H natur wird für die Herstellung von technischen Spritzgussteilen speziell im Bereich anspruchsvoller Metallsubstitution eingesetzt.

Grivory GVL-6H natur wird unter anderem in folgenden Bereichen eingesetzt:

- Automobil
- Maschinenbau
- Haustechnik

Die Glasfasern sind im Granulat parallel ausgerichtet und weisen die gleiche Länge wie das Granulat selbst auf (typischwerweise10 mm)

EIGENSCHAFTEN

Mechanische Eigenschaften

		Norm	Einheit	Zustand	Grivory GVL-6H natur
Zug-E-Modul	1 mm/min	ISO 527	MPa	trocken	22.500
	1 111111/111111			kond.	21.000
Bruchfestigkeit	5 mm/min	ISO 527	MPa	trocken	290
	5 11111/111111			kond.	255
Bruchdehnung	5 mm/min	ISO 527	%	trocken	2.1
	5 11111/111111			kond.	2.1
Schlagzähigkeit	Charpy, 23°C	ISO 179/1eU	kJ/m²	trocken	115
	Charpy, 23 C			kond.	110
Schlagzähigkeit	Charpy 20°C	ISO 179/1eU	kJ/m²	trocken	95
	Charpy, -30 C			kond.	95
Kerbschlagzähigkeit	Charpy, 23°C	ISO 179/1eA	kJ/m²	trocken	40
	Charpy, 23 C			kond.	40
Kerbschlagzähigkeit	Charpy 30°C	ISO 179/1eA	kJ/m²	trocken	40
	Charpy, -30 C			kond.	40
Kugeldruckhärte		ISO 2039-1	MPa	trocken	305
Rugelaruckflarte			IVIFa	kond.	285

Thermische Eigenschaften

Schmelztemperatur	DSC	ISO 11357	°C	trocken	260
Formbeständigkeit HDT/A	1.80 MPa	ISO 75	°C	trocken	255
Formbeständigkeit HDT/C	8.00 MPa	ISO 75	°C	trocken	225
Therm. Längenausdehnung längs	23 - 55°C	ISO 11359	10 ⁻⁴ /K	trocken	0.20
Therm. Längenausdehnung quer	23 - 55°C	ISO 11359	10 ⁻⁴ /K	trocken	0.40
Maximale Gebrauchstemperatur	dauernd	ISO 2578	°C	trocken	100 -120
Maximale Gebrauchstemperatur	kurzzeitig	ISO 2578	°C	trocken	220

Elektrische Eigenschaften

-			trookon	22
Durchschlagfestigkeit	IEC 60243-1	kV/mm	trocken	33
Durchschlagiestigkeit			kond.	33
Vergleichende Kriechwegbildung CTI	IEC 60112	-	kond.	600
			trocken	10 ¹⁰
Spez. Durchgangswiderstand	IEC 60093	Ωm		10 ¹⁰
			kond.	10
Spez. Oberflächenwiderstand	IEC 60093	Ω	kond.	10 ¹³

Allgemeine Eigenschaften

Dichte		ISO 1183	g/cm³	trocken	1.69
Brennbarkeit (UL94)	0.8 mm	ISO 1210	Stufe	-	НВ
Wasseraufnahme	23°C/gesätt.	ISO 62	%	-	3.5
Feuchtigkeitsaufnahme	23°C/50% r.F.	ISO 62	%	-	1.2
Verarbeitungsschwindung	längs	ISO 294	%	trocken	0.1
Verarbeitungsschwindung	quer	ISO 294	%	trocken	0.2

Produkt-Bezeichnung nach ISO 1874 : PA66+PA6I/X, MH, 14-220, GF60

Verarbeitungshinweise für die Spritzgiessverarbeitung von Grivory GVL-6H natur

Um die bestmöglichen Eigenschaften von Grivory GVL-6H natur zu erhalten, muss eine Schädigung der Langglasfasern weitgehend vermieden werden.

Besonderen Einfluss auf die Faserlänge im Bauteil haben insbesondere folgende Parameter:

- Schneckendrehzahl und Staudruck
- Einspritzgeschwindigkeit
- Anguss und Anschnittgeometrie

Die vorliegenden Verarbeitungshinweise geben Ihnen diesbezüglich nützliche Hinweise. Wenn Sie weitere Fragen haben, steht Ihnen unsere Anwendungstechnik gerne zur Verfügung.

MATERIAL VORBEREITUNG

Lagerung

Verschweisste, unbeschädigte Säcke können witterungsgeschützt über Jahre gelagert werden. Als Lagerort empfiehlt sich ein trockener Raum, in dem die Säcke auch vor Beschädigung geschützt sind.

Handhabung und Sicherheit

Detaillierte Informationen können aus dem "Material Sicherheits-Datenblatt" (MSDS) entnommen werden, welches mit der Materialbestellung angefordert werden kann. Eine pneumatische Förderung kann verwendet werden, hierbei werden niedrige Transportgeschwindigkeiten empfohlen.

Trocknung

Grivory GVL-6H natur wird bei der Herstellung mit einem Wassergehalt von unter 0.10 % luftdicht verpackt. Sollte die Verpackung beschädigt oder das Material zu lange offen gelagert worden sein, so muss das Granulat getrocknet werden. Ein zu hoher Wassergehalt kann sich durch einen beim Ausspritzen ins Freie schäumenden Schmelzekuchen und durch Silberschlieren am Spritzgussteil äussern.

Die Trocknung kann erfolgen im:

Trockenluft-Trockner

Temperatur: max. 80°C
Dauer: 4 - 12 Stunden
Taupunkt der Trockenluft: -25°C

Vakuum-Trockner

Temperatur: max. 100°C
Dauer: 4 - 12 Stunden

Trocknungszeit

Die Feuchtigkeit von Grivory GVL-6H natur sollte in jedem Fall kleiner 0.1% sein.

Bei längeren Verweilzeiten im Maschinentrichter (über 1 Stunde) ist eine Trichterbeheizung oder ein Trichtertrockner (80°C) sinnvoll.

MASCHINENANFORDERUNGEN

Grivory GVL-6H natur lässt sich auf allen für Polyamid geeigneten Spritzgiessmaschinen verarbeiten. Um die Eigenschaften langfaserverstärkter Produkte zu erhalten muss eine Faserschädigung weitgehend vermieden werden.

Schnecke

Standard-Polyamidschnecke

Durchmesser: > 40 mm
Länge: 18 D - 22 D
Einzugszonenlänge: 60%
Kompressionsverhältnis: 2 - 2.5
Steghöhe Austragszone: > 2mm

Grundsätzlich kann Grivory GVL-6H natur auch mit kleineren Schnecken verarbeitet werden. Erhöhte Faserschädigung oder Schwankungen beim Einzugsverhalten können dabei nicht ausgeschlossen werden.

Schussvolumen

Der Dosierweg muss in jedem Fall (ohne Dekompressionsweg) länger sein als die Länge der Rückstromsperre.

Auswahl der Spritzeinheit

Schussvolumen = 0.5 - 0.8 x

max. Dosiervolumen

Heizung

Mindestens drei separat regelbare Heizzonen sollten Zylindertemperaturen von bis zu 350°C erzeugen können. Eine separate Düsenheizung ist notwendig. Der Zylinderflansch muss temperierbar sein.

Düse

Nadelverschlussdüsen können die Fasern schädigen, es wird daher empfohlen, offene Düsen mit ausreichendem Durchmesser einzusetzen.

Zuhaltekraft

Die Maschinenzuhaltekraft kann nach folgender Faustformel abgeschätzt werden:

Zuhaltekraft

7.5 kN¹⁾ x projizierte Fläche (cm²)

1) mittl. Forminnendruck 750 bar

WERKZEUGBAU

Für die Auslegung der Werkzeuge gelten die für glasfaserverstärkte Thermoplaste üblichen Richtlinien. Für die formbildenden Bereiche genügen übliche verschleissfeste Werkzeugstähle (durchhärtende Stähle. Einsatzstähle Zusätzlichen Verschleissschutz empfehlen wir in Bereichen mit hoher Strömungsgeschwindigkeit (z.B. Punktanschnitt, Heisskanaldüsen). Spezielle Vorkehrungen für die Verarbeitung langfaserverstärkten Polyamiden müssen nicht getroffen werden.

Anguss / Anschnitt

Um eine übermässige Schädigung der Fasern zu vermeiden, müssen ausreichende Querschnitte für die Formnestfüllung vorgesehen werden, kleine Radien und scharfe Kanten sind zu vermeiden.

Der Anschnitt selbst sollte bei langfaserverstärkten Polyamiden nicht im Bereich hoher Spannungen liegen, da die Fasern um den Anschnitt herum eine nahezu isotrope Ausrichtung zeigen.

Anschnittdurchmesser

0.8 x grösste Wanddicke des Spritzgussteils

Angussdurchmesser

1.4 x grösste Wanddicke des Spritzgussteils (mindestens 4 mm)

Heisskanalsysteme eignen sich gut für die Verarbeitung von Grivory GVL-6H, solange keine scharfen Kanten im Kanal zu finden sind. Offene Systeme sind bevorzugt einzusetzen. Bei Nadelverschlusssystemen ist auf ausreichende Fliessquerschnitte zu achten.

Entlüftung

Für Grivory GVL-6H natur sollte insbesondere im Bereich der Bindenähte grosszügig entlüftet werden. Zusätzlich freigeschliffene Auswerferstifte und Entlüftungsschlitze in der Trennebene sind vorzusehen (0.02 mm).

VERARBEITUNG

Grundeinstellungen

Als Grundeinstellung für die Verarbeitung von Grivory GVL-6H natur hat sich folgendes Profil bewährt.

┌ Temperaturen	
Einzug	80°C
Zone 1	290°C
Zone 2	300°C
Zone 3	310°C
Düse	300°C
Werkzeug	80 - 120°C
Masse	290 - 310°C

Druck / Geschwindigkeiten

Einspritzgeschwindigkeit niedrig - mittel Nachdruck (spez.) 300 - 800 bar Staudruck (spez.) 20 - 60 bar Schneckendrehzahl 4 - 10 m/min

Die Erfahrung zeigt uns, dass insbesondere die Einspritzgeschwindigkeit grossen Einfluss auf die späteren Bauteileigenschaften hat.

Oftmals haben sich eher geringe Einspritzgeschwindigkeiten als günstig erwiesen.

Zur Vermeidung einer Faserschädigung empfiehlt es sich, das Material so schonend wie möglich zu plastifizieren. Die Kühlzeit sollte vollständig zur Plastifizierung verwendet werden.

KUNDENDIENSTLEISTUNGEN

EMS-GRIVORY ist Spezialist in der Polyamidsynthese und Polyamidverarbeitung. Unsere Dienstleistungen umfassen nicht nur die Herstellung und Lieferung von technischen Thermoplasten, wir bieten vielmehr auch eine vollständige technische Unterstützung an:

- Numerische Simulationen
- Prototypenwerkzeuge
- Materialauswahl
- Verarbeitungsunterstützung
- · spezifische Bauteiltests
- Formteil- und Werkzeugdesign

Wir beraten Sie gerne. Nehmen Sie Kontakt mit unseren Verkaufsbüros auf.

Die vorliegenden Daten und Empfehlungen entsprechen dem heutigen Stand unserer Erkenntnisse, eine Haftung in Bezug auf Anwendung und Verarbeitung kann jedoch nicht übernommen werden.

Erstellt / aktualisiert: HEH, 100701

Diese Version ersetzt die vorherigen produktspezifischen Merkblätter.

www.emsgrivory.com